Groundbreaking research published by BIO5 scientists and their collaborators


PubMed Articles

Search form

CD44 has been the subject of extensive research for more than 3 decades because of its role in breast cancer, in addition to many physiological processes, but interestingly, conflicting data implicate CD44 in both tumor suppression and tumor promotion. CD44 has been shown to promote protumorigenic signaling and advance the metastatic cascade. On the other hand, CD44 has been shown to suppress growth and metastasis. Histopathological studies of human breast cancer have correlated CD44 expression with both favorable and unfavorable clinical outcomes. In recent years, CD44 has garnered significant attention because of its utility as a stem cell marker and has surfaced as a potential therapeutic target, necessitating a greater understanding of CD44 in breast cancer. In this review, we attempt to unify the literature implicating CD44 in both tumor promotion and suppression, and explain its dualistic nature.

The virulence of Gram-positive bacteria is enhanced by toxins like the Streptococcus pyogenes β-NAD(+) glycohydrolase known as SPN. SPN-producing strains of S. pyogenes additionally express the protein immunity factor for SPN (IFS), which forms an inhibitory complex with SPN. We have determined crystal structures of the SPN-IFS complex and IFS alone, revealing that SPN is structurally related to ADP-ribosyl transferases but lacks the canonical binding site for protein substrates. SPN is instead a highly efficient glycohydrolase with the potential to deplete cellular levels of β-NAD(+). The protective effect of IFS involves an extensive interaction with the SPN active site that blocks access to β-NAD(+). The conformation of IFS changes upon binding to SPN, with repacking of an extended C-terminal α helix into a compact shape. IFS is an attractive target for the development of novel bacteriocidal compounds functioning by blocking the bacterium's self-immunity to the SPN toxin.

Elevated expression of steroid receptor coactivator-3 (SRC-3), a member of the p160 family of nuclear receptor coactivators, has been implicated in tamoxifen resistance of breast tumors while the involvement of the two other members of this family, SRC-1 and SRC-2, is less well characterized. In this study, using small interfering RNA-based silencing, the role of each SRC coactivator in the growth of the LCC2 estrogen-independent and tamoxifen-resistant breast cancer cell line was evaluated. The loss of SRC-1, SRC-2, or SRC-3 did not significantly alter LCC2 proliferation or cell cycle distribution of 4-hydroxytamoxifen- versus vehicle-treated cells. However, depletion of SRC-2 and SRC-3, but not SRC-1, decreased basal cell proliferation and increased apoptosis. Cell cycle analyses further illustrated the divergent contributions of SRC-2 and SRC-3 with depletion of the former increasing the percentage of cells in the G(0)G(1) and sub-G(0)G(1) phases of cell cycle yet maintaining sensitivity to estradiol and ICI 182 780 antiestrogen, while SRC-3 depletion increased cells in the sub-G(0)G(1) phase and ablated response to estrogen receptor α (ERα) ligands. Surprisingly, the effects of SRC coactivator depletion on ERα transcriptional activity, as measured by luciferase reporter gene, did not correspond to the observed effects on proliferation (e.g. SRC-1 knockdown increases ERα activity). Collectively, these data indicate that SRC control of basal and hormone-regulated proliferations is not solely mediated by ERα, and suggest that targeting growth inhibition by disrupting SRC-2 and SRC-3 function may be an effective approach to inhibit the growth of tamoxifen-resistant breast cancer.

Histone deacetylases (HDACs) have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV) promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins.

Protein--protein interactions are ubiquitous and essential for most biological processes. Although new proteomic technologies have generated large catalogs of interacting proteins, considerably less is known about these interactions at the molecular level, information that would aid in predicting protein interactions, designing therapeutics to alter these interactions, and understanding the effects of disease-producing mutations. Here we describe mapping the interacting surfaces of the bacterial toxin SPN (Streptococcus pyogenes NAD(+) hydrolase) in complex with its antitoxin IFS (immunity factor for SPN) by using hydrogen-deuterium amide exchange and electrospray ionization mass spectrometry. This approach affords data in a relatively short time for small amounts of protein, typically 5-7 pmol per analysis. The results show a good correspondence with a recently determined crystal structure of the IFS--SPN complex but additionally provide strong evidence for a folding transition of the IFS protein that accompanies its binding to SPN. The outcome shows that mass-based chemical footprinting of protein interaction surfaces can provide information about protein dynamics that is not easily obtained by other methods and can potentially be applied to large, multiprotein complexes that are out of range for most solution-based methods of biophysical analysis.

Calcium calmodulin dependent kinase II (CaMKII) is sequestered in dendritic spines within seconds upon synaptic stimulation. The program Smoldyn was used to develop scenarios of single molecule CaMKII diffusion and binding in virtual dendritic spines. We first validated simulation of diffusion as a function of spine morphology. Additional cellular structures were then incorporated to simulate binding of CaMKII to the post-synaptic density (PSD); binding to cytoskeleton; or their self-aggregation. The distributions of GFP tagged native and mutant constructs in dissociated hippocampal neurons were measured to guide quantitative analysis. Intra-spine viscosity was estimated from fluorescence recovery after photo-bleach (FRAP) of red fluorescent protein. Intra-spine mobility of the GFP-CaMKIIα constructs was measured, with hundred-millisecond or better time resolution, from FRAP of distal spine tips in conjunction with fluorescence loss (FLIP) from proximal regions. Different FRAP \ FLIP profiles were predicted from our Scenarios and provided a means to differentiate binding to the PSDs from self-aggregation. The predictions were validated by experiments. Simulated fits of the Scenarios provided estimates of binding and rate constants. We utilized these values to assess the role of self-aggregation during the initial response of native CaMKII holoenzymes to stimulation. The computations revealed that self-aggregation could provide a concentration-dependent switch to amplify CaMKII sequestration and regulate its activity depending on its occupancy of the actin cytoskeleton.

We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental results show an enhancement of 16.09 dB in sensing ethanol vapor after deposition of a polystyrene film. We verify different responses of the polystyrene film when exposed to either ethanol vapor or increased humidity, indicating selectivity. The concept is generic and, in principle, straightforward in its application to other intracavity-based detection schemes to enable gas sensing.

Nucleosomes are the basic packaging units of chromatin, modulating accessibility of regulatory proteins to DNA and thus influencing eukaryotic gene regulation. Elaborate chromatin remodelling mechanisms have evolved that govern nucleosome organization at promoters, regulatory elements, and other functional regions in the genome. Analyses of chromatin landscape have uncovered a variety of mechanisms, including DNA sequence preferences, that can influence nucleosome positions. To identify major determinants of nucleosome organization in the human genome, we used deep sequencing to map nucleosome positions in three primary human cell types and in vitro. A majority of the genome showed substantial flexibility of nucleosome positions, whereas a small fraction showed reproducibly positioned nucleosomes. Certain sites that position in vitro can anchor the formation of nucleosomal arrays that have cell type-specific spacing in vivo. Our results unveil an interplay of sequence-based nucleosome preferences and non-nucleosomal factors in determining nucleosome organization within mammalian cells.

In early heart development, platelet-derived growth factor (PDGF) receptor expression in the heart ventricles is restricted to the epicardium. Previously, we showed that PDGFRβ is required for coronary vascular smooth muscle cell (cVSMC) development, but a role for PDGFRα has not been identified. Therefore, we investigated the combined and independent roles of these receptors in epicardial development.

To understand the contribution of PDGF receptors in epicardial development and epicardial-derived cell fate determination.

By generating mice with epicardial-specific deletion of the PDGF receptors, we found that epicardial epithelial-to-mesenchymal transition (EMT) was defective. Sox9, an SRY-related transcription factor, was reduced in PDGF receptor-deficient epicardial cells, and overexpression of Sox9 restored epicardial migration, actin reorganization, and EMT gene expression profiles. The failure of epicardial EMT resulted in hearts that lacked epicardial-derived cardiac fibroblasts and cVSMC. Loss of PDGFRα resulted in a specific disruption of cardiac fibroblast development, whereas cVSMC development was unperturbed.

Signaling through both PDGF receptors is necessary for epicardial EMT and formation of epicardial-mesenchymal derivatives. PDGF receptors also have independent functions in the development of specific epicardial-derived cell fates.

Since 1958 many, but not all studies have demonstrated that paternal age is a risk factor for schizophrenia. There may be many different explanations for differences between studies, including study design, sample size, collection criteria, heterogeneity and the confounding effects of environmental factors that can for example perturb epigenetic programming and lead to an increase in disease risk. The small number of children in Western families makes risk comparisons between siblings born at different paternal ages difficult. In contrast, more Eastern families have children both at early and later periods of life. In the present study, a cross-sectional population study in an Iranian population was performed to compare frequency of schizophrenia in younger offspring (that is, older paternal age) versus older offspring.

A total of 220 patients with the diagnosis of schizophrenia (cases) from both psychiatric hospitals and private clinics and 220 individuals from other hospital wards (controls), matched for sex and age were recruited for this study. Patients with neurological problem, substance abuse, mental retardation and mood disorder were excluded from both groups.

Birth rank comparisons revealed that 35% vs 24% of the cases vs the controls were in the third or upper birth rank (P = 0.01). Also, the mean age of fathers at birth in case group (30 ± 6.26 years) was significantly more than the control group (26.45 ± 5.64 years; P = 0.0001). The age of 76 fathers at birth in case group was over 32 versus 33 fathers in control group. Individuals whose fathers' age was more than 32 (at birth) were at higher risk (2.77 times) for schizophrenia versus others (P < 0.0001, 95% CI 1.80 to 4.27). The maternal age at parturition of the case versus controls groups was 26.1 ± 5.41 vs 25.07 ± 4.47 (P = 0.02). Logistic regression analysis suggests that maternal age is less likely to be involved in the higher risk of schizophrenia than advanced parental age.

This study demonstrates a relationship between paternal age and schizophrenia in large families of an Iranian population. Arguments have been put forth that DNA bases changes or epigenetic changes in sperm account for the increased risk associated with older fathers. However, it would not be surprising that both de novo germline mutations and epigenetic changes contribute to disease occurrence because DNA replication and DNA methylation are closely linked at both the macromolecular level (that is, methylation closely follows replication), and at the metabolic level (both processes require folate), and susceptible to modulation by the environment. Further research on samples such as those collected here are needed to sort out the contributions of de novo mutations versus epigenetic changes to schizophrenia.

Plasma glucose (P(Glu)) concentrations in birds are 1.5-2 times higher than those of mammals of similar body mass. In mammals, sustained elevations of P(Glu) lead to oxidative stress and free radical-mediated scavenging of endogenous vasodilators (e.g., nitric oxide), contributing to elevated blood pressure. Despite the relatively high P(Glu) levels in birds, they appear resistant to the development of oxidative stress in tissues such as the heart, brain and kidneys. To our knowledge no information exists on oxidative stress susceptibility in the resistance vasculature of birds. Therefore, we compared endogenous antioxidant mechanisms in the resistance vasculature of mourning doves (MODO; Zenaida macroura) and rats (Rattus norvegicus). Reactive oxygen species (ROS) were assessed with the fluorescent indicator 7'-dichlorodihydrofluorescein diacetate, acetyl ester in mesenteric arteries from rats and wild-caught MODO. Despite having significantly higher P(Glu) than rats, there were no significant differences in ROS levels between mesenteric arteries from rats or doves. Although superoxide dismutase and catalase activities were lower in the plasma, total antioxidant capacity, uric acid, vitamin E (α-tocopherol), and carotenoids (lutein and zeaxanthin) were significantly higher in MODO than in rats. Thus, compared to rats, MODO have multiple circulating antioxidants that may prevent the development of oxidative stress in the vasculature.

Data on health status of immigrants and practice recommendations for providers are scarce. We evaluated 99 recent immigrants from developing nations in an immigrant clinic in New York City to assess epidemiology of diseases and to recommend potential screening. Providers received ongoing training. Majority patient was from West Africa and Central America with a mean of 2.1 years in the US. Two thirds were uninsured. Half had positive PPD. Half had prior hepatitis B infection, which was higher in Africans. One quarter had intestinal parasites. Two thirds were overweight; 33% had hypercholesterolemia, 26% were hypertensive, and 25% of women had a Pap smear previously. Eosinophila was higher in African and males (P < 0.05) but didn't predict stool O&P. Recent immigrants were at risk for chronic non-communicable diseases, similar to the US population. Providers should balance their focus on communicable and non-communicable diseases. We recommend practice-based training and on-site comprehensive health services.

Failure of cisplatin-based chemotherapy in advanced germ cell tumour (GCT) is associated with a poor outcome. High-dose chemotherapy and auto-SCT is one therapeutic option, although the long-term outcome after this procedure is unclear. We conducted a multicentre cohort study of consecutive patients undergoing a single auto-SCT for GCT between January 1986 and December 2004. Of 71 subjects, median follow-up is 10.1 years. OS at 5 years is 44.7% (95% confidence interval (CI) 32.9-56.5%) and EFS is 43.5% (95% CI 31.4-55.1%). There were seven (10%) treatment-related deaths within 100 days of auto-SCT. Three (4.2%) patients developed secondary malignancies. Of 33 relapses, 31 occurred within 2 years of auto-SCT. Two very late relapses were noted 13 and 11 years after auto-SCT. In multivariate analysis, favourable outcome was associated with IGCCC (International Germ Cell Consensus Classification) good prognosis disease at diagnosis, primary gonadal disease and response to salvage chemotherapy. We conclude that auto-SCT results in successful outcome for a relatively large subgroup of patients with high-risk GCT. Late relapses may occur, a finding not previously reported.

We assessed whether a shared site intergenerational care program informed by contact theory contributed to more desirable social behaviors of elders and children during intergenerational programming than a center with a more traditional programming approach that lacks some or all of the contact theory tenets.

We observed 59 elder and child participants from the two sites during intergenerational activities. Using the Intergenerational Observation Scale, we coded participants' predominant behavior in 15-s intervals through each activity's duration. We then calculated for each individual the percentage of time frames each behavior code was predominant.

Participants at the theory-based program demonstrated higher rates of intergenerational interaction, higher rates of solitary behavior, and lower rates of watching than at the traditional program.

Contact theory tenets were optimized when coupled with evidence-based practices. Intergenerational programs with stakeholder support that promotes equal group status, cooperation toward a common goal, and mechanisms of friendship among participants can achieve important objectives for elder and child participants in care settings.

Inflammatory airway disease (IAD) is common in racehorses, and is a cause of wastage in the industry. IAD has been diagnosed by measurement of percent neutrophils (N%) in tracheal aspirates (TA). The aim of this study was to investigate whether spirometric indices of pulmonary function were correlated with N% in TAs. Limits to breathing were measured by analyses of relationships between relative times and relative respiratory gas flows during inspiration and expiration in individual breaths recorded after exercise. Horses with higher N% had significantly lower relative gas flows at the same relative times during inspiration and expiration, suggesting a limit to breathing. These findings confirm a physiological basis for the measurement of N% in TA after exercise for diagnosis of IAD. Spirometric pulmonary function testing using analyses of individual breaths after exercise has application for assessment of pulmonary function and poor exercise performance.

SOCS-1 is a critical regulator of multiple signaling pathways, including those activated by cytokines that regulate Ig H chain class switching to IgE. Analysis of mice with mutations in the SOCS-1 gene demonstrated that IgE levels increase with loss of SOCS-1 alleles. This suggested that overall SOCS-1 acts as an inhibitor of IgE expression in vivo. A genetic association study was performed in 474 children enrolled in the Tucson Children's Respiratory Study to determine if genetic variation in the SOCS-1 locus correlates with altered levels of IgE. Carriers of the C-allele for a novel, 3' genomic single nucleotide polymorphism (SNP) in the SOCS-1 gene (SOCS1+1125G > C; rs33932899) were found to have significantly lower levels of serum IgE compared with those of homozygotes for the G-allele. Analysis demonstrated that the SOCS1+1125G > C SNP was in complete linkage disequilibrium with an SNP at position SOCS1-820G > T (rs33977706) of the SOCS-1 promoter. Carriers of the T-allele at the SOCS1-820G > T were also found to be associated with the decreased IgE. The promoter SNP increased transcriptional activity of the SOCS-1 promoter in reporter assays and human B cells. Consistent with this observation, the presence of this polymorphism within the promoter abolished binding of yin yang-1, which is identified as a negative regulator of SOCS-1 transcriptional activity. These data suggest that genetic variation in the SOCS-1 promoter may affect IgE production.

Many environmental risk factors for common, complex human diseases have been revealed by epidemiologic studies, but how genotypes at specific loci modulate individual responses to environmental risk factors is largely unknown. Gene-environment interactions will be missed in genome-wide association studies and could account for some of the 'missing heritability' for these diseases. In this review, we focus on asthma as a model disease for studying gene-environment interactions because of relatively large numbers of candidate gene-environment interactions with asthma risk in the literature. Identifying these interactions using genome-wide approaches poses formidable methodological problems, and elucidating molecular mechanisms for these interactions has been challenging. We suggest that studying gene-environment interactions in animal models, although more tractable, might not be sufficient to shed light on the genetic architecture of human diseases. Lastly, we propose avenues for future studies to find gene-environment interactions.

Until recently, identification of gene regulatory networks controlling the development of the angiosperm female gametophyte has presented a significant challenge to the plant biology community. The angiosperm female gametophyte is fairly inaccessible because it is a highly reduced structure relative to the sporophyte and is embedded within multiple layers of the sporophytic tissue of the ovule. Moreover, although mutations affecting the female gametophyte can be readily isolated, their analysis can be difficult because most affect genes involved in basic cellular processes that are also required in the diploid sporophyte. In recent years, expression-based approaches in multiple species have begun to uncover gene sets expressed in specific female gametophyte cells as a means of identifying regulatory networks controlling cell differentiation in the female gametophyte. Here, recent efforts to identify and analyse gene expression programmes in the Arabidopsis female gametophyte are reviewed.

The transcription factor Nrf2 has emerged as a master regulator of cellular redox homeostasis. As an adaptive response to oxidative stress, Nrf2 activates the transcription of a battery of genes encoding antioxidants, detoxification enzymes, and xenobiotic transporters by binding the cis-antioxidant response element in the promoter regions of genes. The magnitude and duration of inducible Nrf2 signaling is delicately controlled at multiple levels by Keap1, which targets Nrf2 for redox-sensitive ubiquitin-mediated degradation in the cytoplasm and exports Nrf2 from the nucleus. However, it is not clear how Keap1 gains access to the nucleus. In this study, we show that Keap1 is constantly shuttling between the nucleus and the cytoplasm under physiological conditions. The nuclear import of Keap1 requires its C-terminal Kelch domain and is independent of Nrf1 and Nrf2. We have determined that importin α7, also known as karyopherin α6 (KPNA6), directly interacts with the Kelch domain of Keap1. Overexpression of KPNA6 facilitates Keap1 nuclear import and attenuates Nrf2 signaling, whereas knockdown of KPNA6 slows down Keap1 nuclear import and enhances the Nrf2-mediated adaptive response induced by oxidative stress. Furthermore, KPNA6 accelerates the clearance of Nrf2 protein from the nucleus during the postinduction phase, therefore promoting restoration of the Nrf2 protein to basal levels. These findings demonstrate that KPNA6-mediated Keap1 nuclear import plays an essential role in modulating the Nrf2-dependent antioxidant response and maintaining cellular redox homeostasis.

The major obstacle in cancer treatment is the resistance of cancer cells to therapies. Nrf2 is a transcription factor that regulates a cellular defense response and is ubiquitously expressed at low basal levels in normal tissues due to Keap1-dependent ubiquitination and proteasomal degradation. Recently, Nrf2 has emerged as an important contributor to chemoresistance. High constitutive expression of Nrf2 was found in many types of cancers, creating an environment conducive for cancer cell survival. Here, we report the identification of brusatol as a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells and A549 xenografts to cisplatin and other chemotherapeutic drugs. Mechanistically, brusatol selectively reduces the protein level of Nrf2 through enhanced ubiquitination and degradation of Nrf2. Consequently, expression of Nrf2-downstream genes is reduced and the Nrf2-dependent protective response is suppressed. In A549 xenografts, brusatol and cisplatin cotreatment induced apoptosis, reduced cell proliferation, and inhibited tumor growth more substantially when compared with cisplatin treatment alone. Additionally, A549-K xenografts, in which Nrf2 is expressed at very low levels due to ectopic expression of Keap1, do not respond to brusatol treatment, demonstrating that brusatol-mediated sensitization to cisplatin is Nrf2 dependent. Moreover, a decrease in drug detoxification and impairment in drug removal may be the primary mechanisms by which brusatol enhances the efficacy of chemotherapeutic drugs. Taken together, these results clearly demonstrate the effectiveness of using brusatol to combat chemoresistance and suggest that brusatol can be developed into an adjuvant chemotherapeutic drug.