Groundbreaking research published by BIO5 scientists and their collaborators

 

PubMed Articles

Search form

The RASopathies, one of the largest groups of multiple congenital anomaly syndromes known, are caused by germline mutations in various genes encoding components of the Ras/mitogen-activated protein kinase (MAPK) pathway. The RASopathies have many overlapping characteristics, including craniofacial manifestations, cardiac malformations, cutaneous, musculoskeletal, gastrointestinal, and ocular abnormalities, neurocognitive impairment, hypotonia, and an increased risk of developing cancer. Costello syndrome (CS) and cardio-facio-cutaneous (CFC) syndrome are two of the more rare RASopathies. CS is caused by activating mutations in HRAS, and CFC is caused by dysregulation of signaling in the Ras/MAPK pathway due to mutations in BRAF, MEK1, or MEK2. The Ras/MAPK pathway, which has been well-studied in cancer, is an attractive target for inhibition in the treatment of various malignancies utilizing small molecule therapeutics that specifically inhibit the pathway. With many inhibitors of the Ras/MAPK pathway in clinical trials, the notion of using these molecules to ameliorate developmental defects in CS and CFC is under consideration. CS and CFC, like other syndromes in their class, have a progressive phenotype and may be amenable to inhibition or normalization of signaling.

Mutated BRAF is detected in approximately 45% of papillary thyroid carcinomas (PTC). To model PTC, we bred mice with adult-onset, thyrocyte-specific expression of BRAF(V600E). One month following BRAF(V600E) expression, mice displayed increased thyroid size, widespread alterations in thyroid architecture, and dramatic hypothyroidism. Over 1 year, without any deliberate manipulation of tumor suppressor genes, all mice developed PTC displaying nuclear atypia and marker expression characteristic of the human disease. Pharmacologic inhibition of MEK1/2 led to decreased thyroid size, restoration of thyroid form and function, and inhibition of tumorigenesis. Mice with BRAF(V600E)-induced PTC will provide an excellent system to study thyroid tumor initiation and progression and the evaluation of inhibitors of oncogenic BRAF signaling.

Ab initio random structure searching and single-crystal x-ray diffraction have been used to determine the full structures of three phases of lithium, recently discovered at low temperature above 60 GPa. A structure with C2mb symmetry, calculated to be a poor metal, is proposed for the oC88 phase (60-65 GPa). The oC40 phase (65-95 GPa) is found to have a lowest-enthalpy structure with C2cb symmetry, in excellent agreement with the x-ray data. It is calculated to be a semiconductor with a band gap of ∼1  eV at 90 GPa. oC24, stable above 95 GPa, has the space group Cmca, and refined atomic coordinates are in excellent agreement with previous calculations.

BACKGROUND:
Patients with systemic lupus erythematosus (SLE) are at increased risk of atherosclerosis, even after accounting for traditional risk factors. High levels of leptin and low levels of adiponectin are associated with both atherosclerosis and immunomodulatory functions in the general population.

OBJECTIVE:
To examine the association between these adipokines and subclinical atherosclerosis in SLE, and also with other known inflammatory biomarkers of atherosclerosis.

METHODS:
Carotid ultrasonography was performed in 250 women with SLE and 122 controls. Plasma leptin and adiponectin levels were measured. Lipoprotein a (Lp(a)), oxidised phospholipids on apoB100 (OxPL/apoB100), paraoxonase, apoA-1 and inflammatory high-density lipoprotein (HDL) function were also assessed.

RESULTS:
Leptin levels were significantly higher in patients with SLE than in controls (23.7±28.0 vs 13.3±12.9 ng/ml, p<0.001). Leptin was also higher in the 43 patients with SLE with plaque than without plaque (36.4±32.3 vs 20.9±26.4 ng/ml, p=0.002). After multivariate analysis, the only significant factors associated with plaque in SLE were leptin levels in the highest quartile (≥29.5 ng/ml) (OR=2.8, p=0.03), proinflammatory HDL (piHDL) (OR=12.8, p<0.001), age (OR=1.1, p<0.001), tobacco use (OR=7.7, p=0.03) and hypertension (OR=3.0, p=0.01). Adiponectin levels were not significantly associated with plaque in our cohort. A significant correlation between leptin and piHDL function (p<0.001), Lp(a) (p=0.01) and OxPL/apoB100 (p=0.02) was also present.

CONCLUSIONS:
High leptin levels greatly increase the risk of subclinical atherosclerosis in SLE, and are also associated with an increase in inflammatory biomarkers of atherosclerosis such as piHDL, Lp(a) and OxPL/apoB100. High leptin levels may help to identify patients with SLE at risk of atherosclerosis.

No abstract given.

OBJECTIVE:
To assess time trends in use of surgery in patients with non-small cell lung cancer (NSCLC) in a UK region.

METHODS:
Cancer registration data for patients diagnosed with NSCLC between 1995 and 2006 in the East of England were analysed. Rates of surgery use for different age, gender, diagnosis period, tumour subtype and deprivation quintile groups were examined.

RESULTS:
The analysis included 18,767 patients with NSCLC. During the study period, 13% of patients were treated by surgery. Use of surgery decreased over time from 15% in 1995-1997 to 11% in 2004-2006 (p=0.022). Initial socioeconomic differences in surgery use narrowed significantly over time (p=0.028) and became non-apparent at the end of the study period.

CONCLUSIONS:
Use of surgery in patients with NSCLC decreased during the study period, possibly reflecting increasing quality of preoperative staging processes. Initial socioeconomic inequalities in surgery use became undetectable at the end of the study period. The findings provide baseline information to support comparisons with patterns of clinical management in more recent years.

BACKGROUND:
Cancer risk assessment is an important decision-making tool for women considering irreversible risk-reducing surgery. Our objective was to determine the prevalence of BRCA testing among women undergoing bilateral prophylactic mastectomy (BPM) and to review the characteristics of women who choose BPM within a metropolitan setting.

METHODS:
We retrospectively reviewed records of women who underwent BPM in the absence of cancer within 2 health care systems that included 5 metropolitan hospitals. Women with invasive carcinoma or ductal carcinoma in situ (DCIS) were excluded; neither lobular carcinoma in situ (LCIS) nor atypical hyperplasia (AH) were exclusion criteria. We collected demographic information and preoperative screening and risk assessment, BRCA testing, reconstruction, and associated cancer risk-reducing surgery data. We compared women who underwent BRCA testing to those not tested.

RESULTS:
From January 2002 to July 2009, a total of 71 BPMs were performed. Only 25 women (35.2%) had preoperative BRCA testing; 88% had a BRCA mutation. Compared with tested women, BRCA nontested women were significantly older (39.1 vs. 49.2 years, P < 0.001), had significantly more preoperative biopsies and mammograms and had fewer previous or simultaneous cancer risk-reducing surgery (oophorectomy). Among BRCA nontested women, common indications for BPM were family history of breast cancer (n = 21, 45.6%) or LCIS or AH (n = 16, 34.8%); 9 nontested women (19.6%) chose BPM based on exclusively on cancer-risk anxiety or personal preference.

CONCLUSION:
Most women who underwent BPM did not receive preoperative genetic testing. Further studies are needed to corroborate our findings in other geographic regions and practice settings.

Patients with systemic lupus erythematosus have a significantly increased risk of cardiovascular events due to atherosclerosis. Traditional cardiac risk factors cannot fully explain this increased risk. Recent evidence strongly suggests that atherosclerotic plaque is largely driven by inflammation and an active immunological response, in contrast to the long-held belief that plaque is a passive accumulation of lipids in the arterial wall. Current approaches to the prevention of atherosclerosis in systemic lupus erythematosus involve targeting modifiable cardiac risk factors. Future preventive strategies may include therapies that counteract the immunologic responses that lead to plaque formation.

OBJECTIVE:
Systemic sclerosis (SSc) is characterized by calcification, vasculopathy, and endothelial wall damage, all of which can increase the risk of developing atherosclerosis and cardiovascular disease. The aim of this study was to perform a systematic review and meta-analysis to determine whether the risk of atherosclerosis is increased in SSc patients compared to healthy individuals.

METHODS:
A systematic search was performed to identify studies published in PubMed and the Cochrane database up to May 2010, and recently published abstracts were also reviewed. Two reviewers independently screened articles to identify studies comparing the rate of atherosclerosis in SSc patients to that in healthy controls. The studies utilized one of the following methods: angiography, Doppler ultrasound to assess plaque and carotid intima-media thickness (IMT), computed tomography, magnetic resonance imaging, flow-mediated vasodilation (assessed as the FMD%), the ankle-brachial index, or autopsy. For carotid IMT and FMD% values, we computed a pooled estimate of the summary mean difference and explored predictors of carotid IMT using random-effects meta-regression.

RESULTS:
Of the 3,156 articles initially identified, 31 were selected for systematic review. The meta-analysis included 14 studies assessing carotid IMT and 7 assessing brachial artery FMD%. Compared to healthy controls, SSc patients had a higher prevalence of coronary atherosclerosis, peripheral vascular disease, and cerebrovascular calcification. Meta-analysis showed that SSc patients had increased carotid IMT (summary mean difference 0.11 mm, 95% confidence interval [95% CI] 0.05 mm, 0.17 mm; P = 0.0006) and lower FMD% (summary mean difference -3.07%, 95% CI -5.44%, -0.69%; P = 0.01) compared to controls. There was marked heterogeneity between the studies, which was mainly attributable to variations in disease duration and differences in the mean/median age between SSc patients and controls.

CONCLUSION:
Patients with SSc have an increased risk of atherosclerosis compared to healthy subjects. Further studies should elucidate the mechanism of this increased risk.

Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal synthase responsible for the synthesis of the pro-tumorigenic prostaglandin E(2) (PGE(2)). mPGES-1 is overexpressed in a wide variety of cancers. Since its discovery in 1997 by Bengt Samuelsson and collaborators, the enzyme has been the object of over 200 peer-reviewed articles. Although today mPGES-1 is considered a validated and promising therapeutic target for anticancer drug discovery, challenges in inhibitor design and selectivity are such that up to this date there are only a few published records of small-molecule inhibitors targeting the enzyme and exhibiting some in vivo anticancer activity. This review summarizes the structures, and the in vitro and in vivo activities of these novel mPGES-1 inhibitors. Challenges that have been encountered are also discussed.

BACKGROUND:
The major Dengue virus vector Aedes aegypti requires nutrients obtained from blood meal proteins to complete the gonotrophic cycle. Although bioinformatic analyses of Ae. aegypti midgut serine proteases have provided evolutionary insights, very little is known about the biochemical activity of these digestive enzymes.

RESULTS:
We used peptide specific antibodies to show that midgut serine proteases are expressed as zymogen precursors, which are cleaved to the mature form after blood feeding. Since midgut protein levels are insufficient to purify active proteases directly from blood fed mosquitoes, we engineered recombinant proteins encoding a heterologous enterokinase cleavage site to permit generation of the bona fide mature form of four midgut serine proteases (AaET, AaLT, AaSPVI, AaSPVII) for enzyme kinetic analysis. Cleavage of the chromogenic trypsin substrate BApNA showed that AaET has a catalytic efficiency (k(cat)/K(M)) that is ~30 times higher than bovine trypsin, and ~2-3 times higher than AaSPVI and AaSPVII, however, AaLT does not cleave BApNA. To measure the enzyme activities of the mosquito midgut proteases using natural substrates, we developed a quantitative cleavage assay based on cleavage of albumin and hemoglobin proteins. These studies revealed that the recombinant AaLT enzyme was indeed catalytically active, and cleaved albumin and hemoglobin with equivalent efficiency to that of AaET, AaSPVI, and AaSPVII. Structural modeling of the AaLT and AaSPVI mature forms indicated that AaLT is most similar to serine collagenases, whereas AaSPVI appears to be a classic trypsin.

CONCLUSIONS:
These data show that in vitro activation of recombinant serine proteases containing a heterologous enterokinase cleavage site can be used to investigate enzyme kinetics and substrate cleavage properties of biologically important mosquito proteases.

To better understand the mechanism of de novo lipid biosynthesis in blood fed Aedes aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid (14)C-leucine as a metabolic precursor of (14)C-acetyl-CoA, we found that (14)C-triacylglycerol and (14)C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively.

Blood feeding by vector mosquitoes provides the entry point for disease pathogens and presents an acute metabolic challenge that must be overcome to complete the gonotrophic cycle. Based on recent data showing that coatomer protein I (COPI) vesicle transport is involved in cellular processes beyond Golgi-endoplasmic reticulum retrograde protein trafficking, we disrupted COPI functions in the Yellow Fever mosquito Aedes aegypti to interfere with blood meal digestion. Surprisingly, we found that decreased expression of the γCOPI coatomer protein led to 89% mortality in blood-fed mosquitoes by 72 h postfeeding compared with 0% mortality in control dsRNA-injected blood-fed mosquitoes and 3% mortality in γCOPI dsRNA-injected sugar-fed mosquitoes. Similar results were obtained using dsRNA directed against five other COPI coatomer subunits (α, β, β', δ, and ζ). We also examined midgut tissues by EM, quantitated heme in fecal samples, and characterized feeding-induced protein expression in midgut, fat body, and ovary tissues of COPI-deficient mosquitoes. We found that COPI defects disrupt epithelial cell membrane integrity, stimulate premature blood meal excretion, and block induced expression of several midgut protease genes. To study the role of COPI transport in ovarian development, we injected γCOPI dsRNA after blood feeding and found that, although blood digestion was normal, follicles in these mosquitoes were significantly smaller by 48 h postinjection and lacked eggshell proteins. Together, these data show that COPI functions are critical to mosquito blood digestion and egg maturation, a finding that could also apply to other blood-feeding arthropod vectors.

The growing evidence that nitroxyl (HNO) has a rich pharmacological potential that differs from that of nitric oxide (NO) has intensified interest in HNO donors. Recently, the diazeniumdiolate (NONOate) based on isopropylamine (IPA/NO; Na[(CH(3))(2)CHNH(N(O)NO)]) was demonstrated to function under physiological conditions as an organic analogue to the commonly used HNO donor Angeli's salt (Na(2)N(2)O(3)). The decomposition mechanism of Angeli's salt is dependent on pH, with transition from an HNO to an NO donor occurring abruptly near pH 3. Here, pH is shown to also affect product formation from IPA/NO. Chemical analysis of HNO and NO production led to refinement of an earlier, quantum mechanically based prediction of the pH-dependent decomposition mechanisms of primary amine NONOates such as IPA/NO. Under basic conditions, the amine proton of IPA/NO is able to initiate decomposition to HNO by tautomerization to the nitroso nitrogen (N(2)). At lower pH, protonation activates a competing pathway to NO production. At pH 8, the donor properties of IPA/NO and Angeli's salt are demonstrated to be comparable, suggesting that at or above this pH, IPA/NO is primarily an HNO donor. Below pH 5, NO is the major product, while IPA/NO functions as a dual donor of HNO and NO at intermediate pH. This pH-dependent variability in product formation may prove useful in examination of the chemistry of NO and HNO. Furthermore, primary amine NONOates may serve as a tunable class of nitrogen oxide donor.

The multicopper oxidase CueO oxidizes toxic Cu(I) and is required for copper homeostasis in Escherichia coli. Like many proteins involved in copper homeostasis, CueO has a methionine-rich segment that is thought to be critical for copper handling. How such segments function is poorly understood. Here, we report the crystal structure of CueO at 1.1 Å with the 45-residue methionine-rich segment fully resolved, revealing an N-terminal helical segment with methionine residues juxtaposed for Cu(I) ligation and a C-terminal highly mobile segment rich in methionine and histidine residues. We also report structures of CueO with a C500S mutation, which leads to loss of the T1 copper, and CueO with six methionines changed to serine. Soaking C500S CueO crystals with Cu(I), or wild-type CueO crystals with Ag(I), leads to occupancy of three sites, the previously identified substrate-binding site and two new sites along the methionine-rich helix, involving methionines 358, 362, 368, and 376. Mutation of these residues leads to a ∼4-fold reduction in k(cat) for Cu(I) oxidation. Ag(I), which often appears with copper in nature, strongly inhibits CueO oxidase activities in vitro and compromises copper tolerance in vivo, particularly in the absence of the complementary copper efflux cus system. Together, these studies demonstrate a role for the methionine-rich insert of CueO in the binding and oxidation of Cu(I) and highlight the interplay among cue and cus systems in copper and silver homeostasis.

GABA (γ-aminobutyric acid), a non-protein amino acid, is a signaling factor in many organisms. In plants, GABA is known to accumulate under a variety of stresses. However, the consequence of GABA accumulation, especially in vegetative tissues, remains poorly understood. Moreover, gene expression changes as a consequence of GABA accumulation in plants are largely unknown. The pop2 mutant, which is defective in GABA catabolism and accumulates GABA, is a good model to examine the effects of GABA accumulation on plant development. Here, we show that the pop2 mutants have pollen tube elongation defects in the transmitting tract of pistils. Additionally, we observed growth inhibition of primary root and dark-grown hypocotyl, at least in part due to cell elongation defects, upon exposure to exogenous GABA. Microarray analysis of pop2-1 seedlings grown in GABA-supplemented medium revealed that 60% of genes whose expression decreased encode secreted proteins. Besides, functional classification of genes with decreased expression in the pop2-1 mutant showed that cell wall-related genes were significantly enriched in the microarray data set, consistent with the cell elongation defects observed in pop2 mutants. Our study identifies cell elongation defects caused by GABA accumulation in both reproductive and vegetative tissues. Additionally, our results show that genes that encode secreted and cell wall-related proteins may mediate some of the effects of GABA accumulation. The potential function of GABA as a growth control factor under stressful conditions is discussed.

Trichloroethylene (TCE) is a halogenated hydrocarbon used as a solvent in industrial settings and in house-cleaning products. Exposure to TCE has been linked to increased risk for congenital heart malformations in both human and animal models. Previous studies showed TCE exposure reduced the expression and function of the ATP-dependent calcium pump, Serca2a, which is important for regulating calcium flux in myocytes and maintaining physiological cardiac function. In this study, we investigated whether TCE reduced Serca2a expression by altering the methylation status of its proximal promoter region. Low doses of TCE exposure (10 ppb) induced DNA hyper methylation in the Serca2 promoter region in cardiac myoblast cells and rat embryonic cardiac tissue. TCE exposure induced DNA methylation in a region of the Serca2 promoter which is the target for SP1 binding site essential for regulation of Serca2a transcriptional activity. Chromatin immunoprecipitation data confirmed that TCE exposure reduced the binding of SP1 to the Serca2 promoter region adjacent to the methylated CpG dimer. Finally, low-dose TCE exposure reduced the concentration of S-adenosyl-methionine in exposed cells and embryos. These cumulative data indicate that epigenetic mechanisms, including DNA methylation, may be important in mediating the teratogenic effects of TCE in embryonic heart.

A unique flow field pattern in a bio-functional microchannel is utilized to significantly enhance the performance of a microsystem developed for selectively isolating circulating tumor cells from cell suspensions. For high performance of such systems, disposal of maximum non-target species is just as important as retention of maximum target species; unfortunately, most studies ignore or fail to report this aspect. Therefore, sensitivity and specificity are introduced as quantitative criteria to evaluate the system performance enabling a direct comparison among systems employing different techniques. The newly proposed fluidic scheme combines a slow flow field, for maximum target-cell attachment, followed by a faster flow field, for maximum detachment of non-target cells. Suspensions of homogeneous or binary mixtures of circulating breast tumor cells, with varying relative concentrations, were driven through antibody-functionalized microchannels. Either EpCAM or cadherin-11 transmembrane receptors were targeted to selectively capture target cells from the suspensions. Cadherin-11-expressing MDA-MB-231 cancer cells were used as target cells, while BT-20 cells were used as non-target cells as they do not express cadherin-11. The attachment and detachment of these two cell lines are characterized, and a two-step attachment/detachment flow field pattern is implemented to enhance the system performance in capturing target cells from binary mixtures. While the system sensitivity remains high, above 0.95, the specificity increases from about 0.85 to 0.95 solely due to the second detachment step even for a 1 : 1000 relative concentration of the target cells.

Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

Analgesic tolerance is partially mediated by enhanced glutamatergic transmission in the CNS. β-lactam antibiotics, through glutamate transporter subtype 1 (GLT-1) activation, reduce extracellular glutamate levels and attenuate tolerance to morphine analgesia in rats. Similar to opioids, nicotine has potent analgesic properties that are subject to tolerance. The purpose of this study was to evaluate the effects of ceftriaxone, a β-lactam antibiotic and GLT-1 activator on nicotine antinociception and its tolerance. Rats were pretreated for 5 days with ceftriaxone (200 mg/kg, intraperitoneally) before evaluating their analgesic response to nicotine (1.0 or 2.5 mg/kg, subcutaneously) for seven consecutive days using the tail-flick assay. Ceftriaxone-treated rats displayed an enhanced antinociceptive response to nicotine and unlike saline-injected controls, did not develop tolerance to nicotine's analgesic effects. These results suggest that GLT-1 transporter activation enhances and preserves nicotine antinociception and identify β-lactam antibiotics as potential complementary therapeutic agents for the treatment of chronic pain.

Pages