Groundbreaking research published by BIO5 scientists and their collaborators


PubMed Articles

Search form

The resolution dependence of spatial-spectral volume holographic imaging systems on angular and spectral bandwidth of nonuniform gratings is investigated. Modeling techniques include a combination of the approximate coupled-wave analysis and the transfer-matrix method for holograms recorded in absorptive media. The effective thickness of the holograms is used as an estimator of the resolution of the imaging systems. The methodology, which assists in the design and optimization of volume holographic simulation results based on our approach, are confirmed with experiments and show proof of consistency and usefulness of the proposed models.

The performance of broadband volume holographic imaging system in terms of depth selectivity is investigated. The mechanism for depth resolution degradation is explained. In order to overcome this resolution degradation, a novel imaging device, the confocal-rainbow volume holographic imaging system, is proposed. Modeling and experimental validation of the performance of this novel imaging system indicates that depth resolution <16 μm is achievable. The lateral resolution of this device is <2.5 μm along a field of view of 300 μm×100 μm.

Cherries, and in particular sweet cherries, are a nutritionally dense food rich in anthocyanins, quercetin, hydroxycinnamates, potassium, fiber, vitamin C, carotenoids, and melatonin. UV concentration, degree of ripeness, postharvest storage conditions, and processing, each can significantly alter the amounts of nutrients and bioactive components. These constituent nutrients and bioactive food components support the potential preventive health benefits of cherry intake in relation to cancer, cardiovascular disease, diabetes, inflammatory diseases, and Alzheimer's disease. Mechanistically, cherries exhibit relatively high antioxidant activity, low glycemic response, COX 1 and 2 enzyme inhibition, and other anti-carcinogenic effects in vitro and in animal experiments. Well-designed cherry feeding studies are needed to further substantiate any health benefits in humans.

The optimal amount of vegetable consumption required to reduce chronic disease risk is widely debated. Intervention trials evaluating biological activity of vegetables at various doses are limited. We conducted a 3-dose, crossover feeding trial to test the hypothesis that vegetable intake is associated in a dose-dependent manner with increased plasma carotenoids and subsequently reduced oxidative stress and inflammation in 49 overweight, postmenopausal women. Participants were assigned in random order to 2 (130 g), 5 (287 g), and 10 (614 g) daily servings of fresh, greenhouse-grown vegetables for 3-wk intervals with a 4-wk washout period between treatments. Plasma total carotenoids significantly increased from 1.63 to 2.07 μmol/L with a dose of 2 vegetable servings, from 1.49 to 2.84 μmol/L with a dose of 5 vegetable servings, and from 1.40 to 4.42 μmol/L with a dose of 10 vegetable servings (pre-post paired ttests, all P < 0.001). The change during each feeding period increased with each dose level (P < 0.001). Urine concentrations of 8-isoprostane F2α, hexanoyl lysine, and serum high sensitivity C-reactive protein were not affected by any administered vegetable dose. In this variable-dose vegetable study, a dose-response for plasma carotenoids was demonstrated without significant change in oxidative stress and inflammation in overweight, postmenopausal women.

Neutrophils (PMN) are the first cells recruited at the site of inflammation. They play a key role in the innate immune response by recognizing, ingesting, and eliminating pathogens and participate in the orientation of the adaptive immune responses. However, in inflammatory bowel disease (IBD) transepithelial neutrophil migration leads to an impaired epithelial barrier function, perpetuation of inflammation, and tissue destruction via oxidative and proteolytic damage. Curcumin (diferulolylmethane) displays a protective role in mouse models of IBD and in human ulcerative colitis, a phenomenon consistently accompanied by a reduced mucosal neutrophil infiltration.

We investigated the effect of curcumin on mouse and human neutrophil polarization and motility in vitro and in vivo.

Curcumin attenuated lipopolysaccharide (LPS)-stimulated expression and secretion of macrophage inflammatory protein (MIP)-2, interleukin (IL)-1β, keratinocyte chemoattractant (KC), and MIP-1α in colonic epithelial cells (CECs) and in macrophages. Curcumin significantly inhibited PMN chemotaxis against MIP-2, KC, or against conditioned media from LPS-treated macrophages or CEC, a well as the IL-8-mediated chemotaxis of human neutrophils. At nontoxic concentrations, curcumin inhibited random neutrophil migration, suggesting a direct effect on neutrophil chemokinesis. Curcumin-mediated inhibition of PMN motility could be attributed to a downregulation of PI3K activity, AKT phosphorylation, and F-actin polymerization at the leading edge. The inhibitory effect of curcumin on neutrophil motility was further demonstrated in vivo in a model of aseptic peritonitis.

Our results indicate that curcumin interferes with colonic inflammation partly through inhibition of the chemokine expression and through direct inhibition of neutrophil chemotaxis and chemokinesis.

2,3,5-Tris(glutathion-S-yl)-hydroquinone (TGHQ), a metabolite of hydroquinone, is toxic to renal proximal tubule epithelial cells. TGHQ retains the ability to redox cycle and create an oxidative stress. To assist in elucidating the contribution of reactive oxygen species (ROS) to TGHQ-induced toxicity, we determined whether the antioxidant, N-acetyl-L-cysteine (NAC), could protect human kidney proximal tubule epithelial cells (HK-2 cell line) against TGHQ-induced toxicity. NAC provided remarkable protection against TGHQ-induced toxicity to HK-2 cells. NAC almost completely inhibited TGHQ-induced cell death, mitochondrial membrane potential collapse, as well as ROS production. NAC also attenuated TGHQ-induced DNA damage and the subsequent activation of poly (ADP-ribose) polymerase and ATP depletion. Moreover, NAC significantly attenuated c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase phosphorylation induced by TGHQ. In contrast, NAC itself markedly increased extracellular regulated kinase1/2 (ERK1/2) activation, and the upstream mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor, PD-98059, only partially inhibited this activation, suggesting that NAC can directly activate ERK1/2 activity. However, although NAC is frequently utilized as a glutathione (GSH) precursor, the cytoprotection afforded by NAC in HK-2 cells was not a consequence of increased GSH levels. We speculate that NAC exerts its protective effect in part by directly scavenging ROS and in part via ERK1/2 activation.

Recent technological advancements in mass spectrometry facilitate the detection of chemical-induced posttranslational modifications (PTMs) that may alter cell signaling pathways or alter the structure and function of the modified proteins. To identify such protein adducts (Kleiner et al., Chem Res Toxicol 11:1283-1290, 1998), multi-dimensional protein identification technology (MuDPIT) has been utilized. MuDPIT was first described by Link et al. as a new technique useful for protein identification from a complex mixture of proteins (Link et al., Nat Biotechnol 17:676-682, 1999). MuDPIT utilizes two different HPLC columns to further enhance peptide separation, increasing the number of peptide hits and protein coverage. The technology is extremely useful for proteomes, such as the urine proteome, samples from immunoprecipitations, and 1D gel bands resolved from a tissue homogenate or lysate. In particular, MuDPIT has enhanced the field of adduct hunting for adducted peptides, since it is more capable of identifying lesser abundant peptides, such as those that are adducted, than the more standard LC-MS/MS. The site-specific identification of covalently adducted proteins is a prerequisite for understanding the biological significance of chemical-induced PTMs and the subsequent toxicological response they elicit.

The environmental toxicant hydroquinone (HQ) and its glutathione conjugates (GSHQs) cause renal cell necrosis via a combination of redox cycling and the covalent adduction of proteins within the S₃ segment of the renal proximal tubules in the outer stripe of the outer medulla (OSOM). Following administration of 2-(glutathion-S-yl)HQ (MGHQ) (400 μmol/kg, i.v., 2 h) to Long Evans (wild-type Eker) rats, Western analysis utilizing an antibody specific for quinol-thioether metabolites of HQ revealed the presence of large amounts of chemical-protein adducts in both the OSOM and urine. By aligning the Western blot film with a parallel gel stained for protein, we can isolate the adducted proteins for LC-MS/MS analysis. Subsequent database searching can identify the specific site(s) of chemical adduction within these proteins. Finally, a combination of software programs can validate the identity of the adducted peptides. The site-specific identification of covalently adducted and oxidized proteins is a prerequisite for understanding the biological significance of chemical-induced posttranslational modifications (PTMs) and their toxicological significance.

Biologically reactive intermediates are formed following metabolism of xenobiotics, and during normal oxidative metabolism. These reactive species are electrophilic in nature and are capable of forming stable adducts with target proteins. These covalent protein modifications can initiate processes that lead to acute tissue injury or chronic disease. Recent advancements in mass spectrometry techniques and data analysis has permitted a more detailed investigation of site-specific protein modifications by reactive electrophiles. Knowledge from such analyses will assist in providing a better understanding of how specific classes of electrophiles produce toxicity and disease progression via site-selective protein-specific covalent modification. Hydroquinone (HQ) is a known environmental toxicant, and its quinone-thioether metabolites, formed via the intermediate generation of 1,4-benzoquinone (1,4-BQ), elicit their toxic response via the covalent modification of target proteins and the generation of reactive oxygen species. We have utilized a model protein, cytochrome c, to guide us in identifying 1,4-BQ- and 1,4-BQ-thioether derived site-specific protein modifications. LC-MS/MS analyses reveals that these modifications occur selectively on lysine and glutamic acid residues of the target protein, and that these modifications occur within identifiable "electrophile binding motifs" within the protein. These motifs are found within lysine-rich regions of the protein and appear to be target sites of 1,4-BQ-thioether adduction. These residues also appear to dictate the nature of post-adduction chemistry and the final structure of the adduct. This model system will provide critical insight for in vivo adduct hunting following exposure to 1,4-BQ-thioethers, but the general approaches can also be extended to the identification of protein adducts derived from other classes of reactive electrophiles.

Biological reactive intermediates can be created via metabolism of xenobiotics during the process of chemical elimination. They can also be formed as by-products of cellular metabolism, which produces reactive oxygen and nitrogen species. These reactive intermediates tend to be electrophilic in nature, which enables them to interact with tissue macromolecules, disrupting cellular signaling processes and often producing acute and chronic toxicities. Quinones are a well-known class of electrophilic species. Many natural products contain quinones as active constituents, and the quinone moiety exists in a number of chemotherapeutic agents. Quinones are also frequently formed as electrophilic metabolites from a variety of xeno- and endobiotics. Hydroquinone (HQ) is present in the environment from various sources, and it is also a known metabolite of benzene. HQ is converted in the body to 1,4-benzoquinone, which subsequently gives rise to hematotoxic and nephrotoxic quinone-thioether metabolites. The toxicity of these metabolites is dependent upon their ability to arylate proteins and to produce oxidative stress. Protein tertiary structure and protein amino acid sequence combine to determine which proteins are targets of these electrophilic quinone-thioether metabolites. We have used cytochrome c and model peptides to view adduction profiles of quinone-thioether metabolites, and have determined by MALDI-TOF analysis that these electrophiles target specific residues within these model systems.

The analysis of self-assembled protein microarrays, using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, combines two high-throughput platforms for investigation of the proteome. In this article, we describe the fabrication in situ of protein arrays optimized for MALDI characterization. Using the green fluorescent protein (GFP) both as an epitope for immobilization and as a gauge for relative protein expression, we were able to generate amounts of protein on the array slides sufficient for MALDI identification. In addition, expression of N-terminal protein constructs fused to GFP demonstrated mass shifts consistent with that of the full-length protein. We envision this technology to be important for the functional screening of protein interactions.

Electrophile-mediated post-translational modifications (PTMs) are known to cause tissue toxicities and disease progression. These effects are mediated via site-specific modifications and structural disruptions associated with such modifications. 1,4-Benzoquinone (BQ) and its quinone-thioether metabolites are electrophiles that elicit their toxicity via protein arylation and the generation of reactive oxygen species. Site-specific BQ-lysine adducts are found on residues in cytochrome c that are necessary for protein-protein interactions, and these adducts contribute to interferences in its ability to facilitate apoptosome formation. To further characterize the structural and functional impact of these BQ-mediated PTMs, the original mixture of BQ-adducted cytochrome c was fractionated by liquid isoelectric focusing to provide various fractions of BQ-adducted cytochrome c species devoid of the native protein. The fractionation process separates samples based on their isoelectric point (pI), and because BQ adducts form predominantly on lysine residues, increased numbers of BQ adducts on cytochrome c correlate with a lower protein pI. Each fraction was analyzed for structural changes, and each was also assayed for the ability to support apoptosome-mediated activation of caspase-3. Circular dichroism revealed that several of the BQ-adducted cytochrome c species maintained a slightly more rigid structure in comparison to native cytochrome c. BQ-adducted cytochrome c also failed to activate caspase-3, with increasing numbers of BQ-lysine adducts corresponding to a greater inability to activate the apoptosome. In summary, the specific site of the BQ-lysine adducts, and the nature of the adduct, are important determinants of the subsequent structural changes to cytochrome c. In particular, adducts at sites necessary for protein-protein interactions interfere with the proapoptotic function of cytochrome c.

Methylglyoxal (MG) is a biologically reactive byproduct of glucose metabolism, levels of which increase in diabetes. MG modification of protein generates neutral hydroimidazolone adducts on arginine residues which can alter functional active sites. We investigated the site-specificity of MG adduction to human serum albumin (HSA) using multiple reaction monitoring (MRM) of 13 MG-modified tryptic peptides, each containing an internal arginine. Seven new sites for MG modification (R257>R209>R222>R81>R485>R472>R10) are described. Analysis of MG-treated HSA showed substantial R257 and R410 modification, with MG-modified R257 (at 100μM MG) in drug site I causing significant inhibition of prostaglandin catalysis. The MG hydroimidazolone (MG-H1) adduct was modeled at R257, and molecular dynamics simulations and affinity docking revealed a decrease of 12.8-16.5kcal/mol (S and R isomers, respectively) for warfarin binding in drug site I. Taken together, these results suggest that R257 is a likely site for MG modification in vivo, which may have functional consequences for prostaglandin metabolism and drug bioavailability.

The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening -studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents.

HIV infection is characterized by immune system dysregulation, including depletion of CD4+ T cells, immune activation, and abnormal B- and T-cell responses. However, the immunologic mechanisms underlying lymphocytic dysfunctionality and whether it is restricted to immune responses against neo antigens, recall antigens, or both is unclear. Here, we immunized SIV-infected and uninfected rhesus macaques to induce immune responses against neo and recall antigens using a Leishmania major polyprotein (MML) vaccine given with poly-ICLC adjuvant. We found that vaccinated SIVuninfected animals induced high frequencies of polyfunctional MML-specific CD4+ T cells. However, in SIV-infected animals, CD4+ T-cell functionality decreased after both neo (P = .0025) and recall (P = .0080) MML vaccination. Furthermore, after SIV infection, the frequency of MML-specific antibody-secreting classic memory B cells was decreased compared with vaccinated, SIV-uninfected animals. Specifically, antibody-secreting classic memory B cells that produced IgA in response to either neo (P = .0221) or recall (P = .0356) MML vaccinations were decreased. Furthermore, we found that T-follicular helper cells, which are essential for priming B cells, are preferentially infected with SIV. These data indicate that SIV infection results in dysfunctional T-cell responses to neo and recall vaccinations, and direct SIV infection of T-follicular helper cells, both of which probably contribute to deficient B-cell responses and, presumably, susceptibility to certain opportunistic infections.

Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

High-titer autologous neutralizing antibody responses have been demonstrated during early subtype C human immunodeficiency virus type 1 (HIV-1) infection. However, characterization of this response against autologous virus at the monoclonal antibody (MAb) level has only recently begun to be elucidated. Here we describe five monoclonal antibodies derived from a subtype C-infected seroconverter and their neutralizing activities against pseudoviruses that carry envelope glycoproteins from 48 days (0 month), 2 months, and 8 months after the estimated time of infection. Sequence analysis indicated that the MAbs arose from three distinct B cell clones, and their pattern of neutralization compared to that in patient plasma suggested that they circulated between 2 and 8 months after infection. Neutralization by MAbs representative of each B cell clone was mapped to two residues: position 134 in V1 and position 189 in V2. Mutational analysis revealed cooperative effects between glycans and residues at these two positions, arguing that they contribute to a single epitope. Analysis of the cognate gp120 sequence through homology modeling places this potential epitope near the interface between the V1 and V2 loops. Additionally, the escape mutation R189S in V2, which conferred resistance against all three MAbs, had no detrimental effect on virus replication in vitro. Taken together, our data demonstrate that independent B cells repeatedly targeted a single structure in V1V2 during early infection. Despite this assault, a single amino acid change was sufficient to confer complete escape with minimal impact on replication fitness.

To achieve early detection and specific cancer treatment, we propose the use of multivalent interactions in which a series of binding events leads to increased affinity and consequently to selectivity. Using melanotropin (MSH) ligands, our aim is to target melanoma cells which overexpress melanocortin receptors. In this study, we report the design and efficient synthesis of new trivalent ligands bearing MSH ligands. Evaluation of these multimers on a cell model engineered to overexpress melanocortin 4 receptors (MC4R) showed up to a 350-fold increase in binding compared to the monomer, resulting in a trivalent construct with nanomolar affinity starting from a micromolar affinity ligand. Cyclic adenosine monophosphate (cAMP) production was also investigated, leading to more insights into the effects of multivalent compounds on transduction mechanisms.

Bacteria have evolved several transport mechanisms to maintain metal homeostasis and to detoxify the cell. One mechanism involves an RND (resistance-nodulation-cell division protein family)-driven tripartite protein complex to extrude a variety of toxic substrates to the extracellular milieu. These efflux systems are comprised of a central RND proton-substrate antiporter, a membrane fusion protein, and an outer membrane factor. The mechanism of substrate binding and subsequent efflux has yet to be elucidated. However, the resolution of recent protein crystal structures and genetic analyses of the components of the heavy-metal efflux family of RND proteins have allowed the developments of proposals for a substrate transport pathway. Here two models of substrate extrusion through RND protein complexes of the heavy-metal efflux protein family are described. The funnel model involves the shuttling of periplasmic substrate from the membrane fusion protein to the RND transporter and further on through the outer membrane factor to the extracellular space. Conversely, the switch model requires substrate binding to the membrane fusion protein, inducing a conformational change and creating an open-access state of the tripartite protein complex. The extrusion of periplasmic substrate bypasses the membrane fusion protein, enters the RND-transporter directly via its substrate-binding site, and is ultimately eliminated through the outer membrane channel. Evidence for and against the two models is described, and we propose that current data favor the switch model.

A series of near-IR-absorbing soluble phthalocyanines (Pcs) with eight alkyne moieties as side chains of the chromophore have been synthesized. One of these Pcs has been used as a scaffold for functional group modification using alkyne-azide click chemistry with various azides. This led to a small library of Pcs with photo and thermal crosslinkable, dendritic, and hydrophilic moieties starting from a single Pc molecule. A patterned thin film was fabricated by photocrosslinking one of these Pc derivatives.